Manifold Regularized Multi-Task Learning
نویسندگان
چکیده
Multi-task learning (MTL) has drawn a lot of attentions in machine learning. By training multiple tasks simultaneously, information can be better shared across tasks. This leads to significant performance improvement in many problems. However, most existing methods assume that all tasks are related or their relationship follows a simple and specified structure. In this paper, we propose a novel manifold regularized framework for multi-task learning. Instead of assuming simple relationship among tasks, we propose to learn task decision functions as well as a manifold structure from data simultaneously. As manifold could be arbitrarily complex, we show that our proposed framework can contain many recent MTL models, e.g. RegMTL and cCMTL, as special cases. The framework can be solved by alternatively learning all tasks and the manifold structure. In particular, learning all tasks with the manifold regularization can be solved as a single-task learning problem, while the manifold structure can be obtained by successive Bregman projection on a convex feasible set. On both synthetic and real datasets, we show that our method can outperform the other competitive methods.
منابع مشابه
Multi-modal Face Pose Estimation with Multi-task Manifold Deep Learning
Human face pose estimation aims at estimating the gazing direction or head postures with 2D images. It gives some very important information such as communicative gestures, saliency detection and so on, which attracts plenty of attention recently. However, it is challenging because of complex background, various orientations and face appearance visibility. Therefore, a descriptive representatio...
متن کاملA Unifying Framework in Vector-valued Reproducing Kernel Hilbert Spaces for Manifold Regularization and Co-Regularized Multi-view Learning
This paper presents a general vector-valued reproducing kernel Hilbert spaces (RKHS) framework for the problem of learning an unknown functional dependency between a structured input space and a structured output space. Our formulation encompasses both Vector-valued Manifold Regularization and Co-regularized Multi-view Learning, providing in particular a unifying framework linking these two imp...
متن کاملManifold Regularized Multi-Task Feature Selection for Multi-Modality Classification in Alzheimer's Disease
Accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment, MCI), is very important for possible delay and early treatment of the disease. Recently, multi-modality methods have been used for fusing information from multiple different and complementary imaging and non-imaging modalities. Although there are a number of existing multi-modality m...
متن کاملManifold Regularized Transfer Distance Metric Learning
The performance of many computer vision and machine learning algorithms are heavily depend on the distance metric between samples. It is necessary to e xploit abundant of side information like pairwise constraints to learn a robust and reliable distance metric. While in real world application, large quantities of labeled data is unavailable due to the high labeling cost. Transfer distance metri...
متن کاملMulti-View Point Cloud Kernels for Semi-Supervised Learning
In semi-supervised learning (SSL), we learn a predictive model from a collection of labeled data and a typically much larger collection of unlabeled data. These lecture notes present a framework called multi-view point cloud regularization (MVPCR) [5], which unifies and generalizes several semi-supervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbe...
متن کامل